Last program we present TinyHyperLogLog that used to count distinct elements of a set which is inspired by HyperLogLog. Today we gonna go through HyperLogLog. Actually, TinyHyperLogLog is pretty much close to HyperLogLog except optimization techniques.

There are two fundamental and outstandingly changes.

(1) HyperLogLog uses a serial of constants to optimize the results.

Two important factors are alpha and linear counting which are mathematical knowledge. Here I'm not going to talk too much. If you are interested, you can go through the author's paper.

In TinyHyperLogLog we use integer for each bucket counter. We all know that the size of integer is 32, apart from the bucket id, the longest one is only (32-BIT_LENGTH_FOR_BUCKET_ID). So we can use at most 5 bits to represent it if bucketSize>=1.

For a long type, apart from the bucket id, the longest one is only (64-BIT_LENGTH_FOR_BUCKET_ID). So we can use at most 6 bits to represent it if bucketSize>=1.

To conserve memory, each integer is divided into BIT_LENGTH_FOR_BUCKET_VALUE_RANGE buckets. The ultimate purpose is to make memory fully used because the length of the longest leading 0s cannot be very long.

The register comes out. Register is a group of buckets, use a single integer to represent a bucket is too expensive for memory. We can divide it to save a considerable amount of memory.

the generated hash length, we recommend to use long type since it's able to represent much more distinct elements than integer.

``````public class HyperLogLog<T> {

private final int hashLen = 64;
// the leading BIT_LENGTH_FOR_BUCKET_ID bits represent the bucket id
private final int BIT_LENGTH_FOR_BUCKET_ID;
private RegisterSet registerSet;

/**
* accuracy = 1.04/sqrt(2^BIT_LENGTH_FOR_BUCKET_ID)
*
* @param BIT_LENGTH_FOR_BUCKET_ID
*/
public HyperLogLog(int BIT_LENGTH_FOR_BUCKET_ID) {
this.BIT_LENGTH_FOR_BUCKET_ID = BIT_LENGTH_FOR_BUCKET_ID;

this.registerSet = new RegisterSet(1 << BIT_LENGTH_FOR_BUCKET_ID, hashLen);
}

public static void main(String[] args) {
HyperLogLog<String> hyperLogLog = new HyperLogLog(16);

int count = 0;
while (true) {
for (int i = 0; i < 100000; i++) {
}

if (count > 10) {
break;
}

count++;
}

System.out.println(hyperLogLog.cardinality());
}

protected static double getAlpha(final int p) {

// generate a optimization factor

int m = 1 << p;
// See the paper.
switch (p) {
case 4:
return 0.673 * m * m;
case 5:
return 0.697 * m * m;
case 6:
return 0.709 * m * m;
default:
return (0.7213 / (1 + 1.079 / m)) * m * m;
}
}

protected static double linearCounting(int bucketNum, double zeroNumOfBuckets) {
return bucketNum * Math.log(bucketNum / zeroNumOfBuckets);
}

/**
* Add element to the HyperLogLog counter
*
* @param o inserted element
* @return
*/
public boolean offer(T o) {
if (hashLen == 32) {
// we generate a integer hash sequence
return offerHashed(MurmurHash.hash32(o.toString()));
}

// we generate a long hash sequence so that we can count more distinct elements than Integer can be.
return offerHashed(MurmurHash.hash64(o.toString()));
}

public boolean offerHashed(int hashedValue) {
// the leading BIT_LENGTH_FOR_BUCKET_ID bits represents the bucket id
int bid = hashedValue >>> (Integer.SIZE - BIT_LENGTH_FOR_BUCKET_ID);

// hashValue << BIT_LENGTH_FOR_BUCKET_ID means the rest bits other than the bucket id
// if the hashedValue is 0000,0000,0000,0000, at least you should stop counting at the (32-BIT_LENGTH_FOR_BUCKET_ID)
// position because trailing bits represents nothing which are introduced because of shift process.
final int leading0s = Long.numberOfLeadingZeros((hashedValue << BIT_LENGTH_FOR_BUCKET_ID) | (1 << (BIT_LENGTH_FOR_BUCKET_ID - 1)) + 1) + 1;

}

public boolean offerHashed(long hashedValue) {
int bid = (int) (hashedValue >>> (Long.SIZE - BIT_LENGTH_FOR_BUCKET_ID));

final int leading0s = Long.numberOfLeadingZeros((hashedValue << BIT_LENGTH_FOR_BUCKET_ID) | (1 << (BIT_LENGTH_FOR_BUCKET_ID - 1)) + 1) + 1;

}

public long cardinality() {
double sum = 0;
double zeros = 0.0;

for (int j = 0; j < registerSet.bucketNum; j++) {
int val = registerSet.get(j);

sum += 1.0 / (1 << val);

if (val == 0) {
zeros++;
}
}

double estimate = getAlpha(BIT_LENGTH_FOR_BUCKET_ID) * (1 / sum);

if (estimate <= (5.0 / 2.0) * registerSet.bucketNum) {
return Math.round(linearCounting(registerSet.bucketNum, zeros));
} else {
return Math.round(estimate);
}
}
}

class RegisterSet {

// its length is 5 if hash type is integer, or else 6 if hash type is long
public static int BIT_LENGTH_FOR_BUCKET_VALUE_RANGE = 5;

// BUCKET_NUM_PER_REGISTER = 32 / BIT_LENGTH_FOR_BUCKET_VALUE_RANGE;
public static int BUCKET_NUM_PER_REGISTER = 6;

public int BUCKET_MASK = (1 << (BIT_LENGTH_FOR_BUCKET_VALUE_RANGE)) - 1;

public int bucketNum;
public int registerNum;

private int[] registers;

public RegisterSet(int bucketNum, int hashLen) {
this.bucketNum = bucketNum;

// default hash type is int, 32
if (hashLen == 64) {
BIT_LENGTH_FOR_BUCKET_VALUE_RANGE = 6;

// the hash length may be 32 (integer) or 64 (long)
this.BUCKET_NUM_PER_REGISTER = 32 / BIT_LENGTH_FOR_BUCKET_VALUE_RANGE;

this.BUCKET_MASK = (1 << (BIT_LENGTH_FOR_BUCKET_VALUE_RANGE)) - 1;
}

// if cannot be exactly divided, we still need to allocate memory for the rest buckets
this.registerNum = bucketNum / BUCKET_NUM_PER_REGISTER + 1;

this.registers = new int[this.registerNum];
}

public boolean set(int bucketId, int value) {
// register index
int regId = bucketId / BUCKET_NUM_PER_REGISTER;

int shift = BIT_LENGTH_FOR_BUCKET_VALUE_RANGE * (bucketId % BUCKET_NUM_PER_REGISTER);

this.registers[regId] = (this.registers[regId] & ~(BUCKET_MASK << shift)) | (value << shift);

return true;
}

public int get(int bucketId) {
int regId = bucketId / BUCKET_NUM_PER_REGISTER;

int shift = BIT_LENGTH_FOR_BUCKET_VALUE_RANGE * (bucketId - (regId * BUCKET_NUM_PER_REGISTER));

return (this.registers[regId] & (BUCKET_MASK << shift)) >>> shift;
}

public boolean updateIfGreater(int bucketId, int value) {
int regId = bucketId / BUCKET_NUM_PER_REGISTER;

int shift = BIT_LENGTH_FOR_BUCKET_VALUE_RANGE * (bucketId % BUCKET_NUM_PER_REGISTER);

long curVal = this.registers[regId] & mask;
long newVal = value << shift;

if (curVal < newVal) {
return set(bucketId, value);
}

return false;
}
}

/**
* murmur hash 2.0.
* <p>
* The murmur hash is a relatively fast hash function from
* http://murmurhash.googlepages.com/ for platforms with efficient
* multiplication.
* <p>
* This is a re-implementation of the original C code plus some
* <p>
* Public domain.
*
* @author Viliam Holub
* @version 1.0.2
*/
final class MurmurHash {
// all methods static; private constructor.
private MurmurHash() {
}

/**
* Generates 32 bit hash from byte array of the given length and
* seed.
*
* @param data   byte array to hash
* @param length length of the array to hash
* @param seed   initial seed value
* @return 32 bit hash of the given array
*/
public static int hash32(final byte[] data, int length, int seed) {

// 'm' and 'r' are mixing constants generated offline.
// They're not really 'magic', they just happen to work well.

final int m = 0x5bd1e995;
final int r = 24;

// Initialize the hash to a random value
int h = seed ^ length;
int length4 = length / 4;
for (int i = 0; i < length4; i++) {
final int i4 = i * 4;
int k = (data[i4 + 0] & 0xff) + ((data[i4 + 1] & 0xff) << 8)
+ ((data[i4 + 2] & 0xff) << 16) + ((data[i4 + 3] & 0xff) << 24);
k *= m;
k ^= k >>> r;
k *= m;
h *= m;
h ^= k;
}

// Handle the last few bytes of the input array
switch (length % 4) {
case 3:
h ^= (data[(length & ~3) + 2] & 0xff) << 16;
case 2:
h ^= (data[(length & ~3) + 1] & 0xff) << 8;
case 1:
h ^= (data[length & ~3] & 0xff);
h *= m;
}
h ^= h >>> 13;
h *= m;
h ^= h >>> 15;
return h;
}

/**
* Generates 32 bit hash from byte array with default seed value.
*
* @param data   byte array to hash
* @param length length of the array to hash
* @return 32 bit hash of the given array
*/
public static int hash32(final byte[] data, int length) {
return hash32(data, length, 0x9747b28c);
}

/**
* Generates 32 bit hash from a string.
*
* @param text string to hash
* @return 32 bit hash of the given string
*/
public static int hash32(final String text) {
final byte[] bytes = text.getBytes();
return hash32(bytes, bytes.length);
}

/**
* Generates 32 bit hash from a substring.
*
* @param text   string to hash
* @param from   starting index
* @param length length of the substring to hash
* @return 32 bit hash of the given string
*/
public static int hash32(final String text, int from, int length) {
return hash32(text.substring(from, from + length));
}

/**
* Generates 64 bit hash from byte array of the given length and seed.
*
* @param data   byte array to hash
* @param length length of the array to hash
* @param seed   initial seed value
* @return 64 bit hash of the given array
*/
public static long hash64(final byte[] data, int length, int seed) {
final long m = 0xc6a4a7935bd1e995L;
final int r = 47;
long h = (seed & 0xffffffffl) ^ (length * m);
int length8 = length / 8;
for (int i = 0; i < length8; i++) {
final int i8 = i * 8;
long k = ((long) data[i8 + 0] & 0xff) + (((long) data[i8 + 1] & 0xff) << 8)
+ (((long) data[i8 + 2] & 0xff) << 16) + (((long) data[i8 + 3] & 0xff) << 24)
+ (((long) data[i8 + 4] & 0xff) << 32) + (((long) data[i8 + 5] & 0xff) << 40)
+ (((long) data[i8 + 6] & 0xff) << 48) + (((long) data[i8 + 7] & 0xff) << 56);
k *= m;
k ^= k >>> r;
k *= m;
h ^= k;
h *= m;
}
switch (length % 8) {
case 7:
h ^= (long) (data[(length & ~7) + 6] & 0xff) << 48;
case 6:
h ^= (long) (data[(length & ~7) + 5] & 0xff) << 40;
case 5:
h ^= (long) (data[(length & ~7) + 4] & 0xff) << 32;
case 4:
h ^= (long) (data[(length & ~7) + 3] & 0xff) << 24;
case 3:
h ^= (long) (data[(length & ~7) + 2] & 0xff) << 16;
case 2:
h ^= (long) (data[(length & ~7) + 1] & 0xff) << 8;
case 1:
h ^= (long) (data[length & ~7] & 0xff);
h *= m;
}
;
h ^= h >>> r;
h *= m;
h ^= h >>> r;
return h;
}

/**
* Generates 64 bit hash from byte array with default seed value.
*
* @param data   byte array to hash
* @param length length of the array to hash
* @return 64 bit hash of the given string
*/
public static long hash64(final byte[] data, int length) {
return hash64(data, length, 0xe17a1465);
}

/**
* Generates 64 bit hash from a string.
*
* @param text string to hash
* @return 64 bit hash of the given string
*/
public static long hash64(final String text) {
final byte[] bytes = text.getBytes();
return hash64(bytes, bytes.length);
}

/**
* Generates 64 bit hash from a substring.
*
* @param text   string to hash
* @param from   starting index
* @param length length of the substring to hash
* @return 64 bit hash of the given array
*/
public static long hash64(final String text, int from, int length) {
return hash64(text.substring(from, from + length));
}
}
``````